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Bayesian ages for pollen records 
since the last glaciation in North 
America
Yue Wang   1, Simon J. Goring2 & Jenny L. McGuire1

Terrestrial pollen records are abundant and widely distributed, making them an excellent proxy for past 
vegetation dynamics. Age-depth models relate pollen samples from sediment cores to a depositional 
age based on the relationship between sample depth and available chronological controls. Large-scale 
synthesis of pollen data benefit from consistent treatment of age uncertainties. Generating new age 
models helps to reduce potential artifacts from legacy age models that used outdated techniques. 
Traditional age-depth models, often applied for comparative purposes, infer ages by fitting a curve 
between dated samples. Bacon, based on Bayesian theory, simulates the sediment deposition process, 
accounting for both variable deposition rates and temporal/spatial autocorrelation of deposition from 
one sample to another within the core. Bacon provides robust uncertainty estimation across cores 
with different depositional processes. We use Bacon to estimate pollen sample ages from 554 North 
American sediment cores. This dataset standardizes age-depth estimations, supporting future large 
spatial-temporal studies and removes a challenging, computationally-intensive step for scientists 
interested in questions that integrate across multiple cores.

Background & Summary
Fossil pollen can be used as a proxy for past vegetation changes, allowing us to infer or compare these changes 
to past environmental conditions. With pollen we can determine the mechanisms driving ecosystem changes 
and infer future responses to environmental change. The pollen record of the last 22,000 years, since the Last 
Glacial Maximum (LGM), is particularly useful because it traverses many abrupt changes in climate, such as 
Bølling–Allerød warming event (15,000 BP) and Younger Dryas cooling event (12,700 BP)1 with high temporal 
resolution2. Many impactful macroecological studies have used long-term pollen data from this period to exam-
ine vegetation responses to climate shifts3,4, the extent to which no-analog climates result in no-analog communi-
ties5–7, and the effectiveness of reserve prioritization methods8,9. These studies have demonstrated that plant taxa 
individualistically track late-Quaternary climate rather than shifting simultaneously as communities of species3,4. 
They have also shown that no-analog plant communities existed in the past and will be common in the near future 
under novel climate5–7. Pollen analysis will continue to provide critical insights that inform our predictive models. 
However, they are currently hampered by the extensive data processing necessary before big-picture questions 
can be addressed.

The greatest obstacle to vegetation studies that span large spatio-temporal scales is the challenge of establish-
ing accurate, consistent pollen ages. To explore spatio-temporal changes across pollen samples, the events in one 
pollen record must be linked to events across records. Thus it is critical to construct a consistent and accurate 
temporal framework across sediment cores (e.g., Giesecke, 201410 and Blois, 201111). In sediment cores, age-depth 
models estimate pollen sample ages by integrating radiocarbon-dated specimens with pollen sample depths. 
Several different age-depth model routines have been developed (clam12, Bacon13, OxCal14, etc.) that can produce 
different age estimations for a single core by incorporating uncertainty and depositional processes differently15. 
Even when using a single age-depth model, the selection of different parameter values can produce different age 
estimates. Data for largescale pollen studies are most frequently acquired from community data repositories, such 
as the Neotoma Paleoecology Database (https://www.neotomadb.org/)16. Paleoecological databases, including 
Neotoma, compile pollen records and their estimated ages from authors’ publications and contributions. Thus, 
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if one were to try to use multiple cores for analysis, the cores would likely possess a variety of low-quality age 
estimations, including poorly-calibrated radiocarbon dates and simple interpolations between dates. Few age 
estimations would include uncertainty estimations. Any analyses that use pollen records derived from multiple 
studies must recalculate age-depth models and parameter values for consistency and accuracy12,17–19.

Two main classes of age-depth models are used in the literature: classical and Bayesian. Classical age mod-
eling includes linear interpolation, polynomial fits, or smooth splines. These estimated ages can be accurate, 
but estimated age uncertainties are usually underestimated18. Bayesian age-depth models, including Bacon, 
BChron20, and OxCal, have features that can consider the underlying uncertainty of the chronological controls, 
but many also have the benefit of using other prior information in model construction. For example, Bacon pro-
vides support for estimates of accumulation rates and their autocorrelation within the core. As a result, Bayesian 
age-depth models can increase accuracy when chronological controls are complex and/or possess high resolution 
sampling12. More importantly, the way Bayesian methods accomidate uncertainty removes the subjectivity from 
deciding which dates should be included13,21. Bacon has become an important tool for modelling age-depth rela-
tionships in large scale studies22–25.

To facilitate continental-scale analyses in North America, we created a single dataset that provides Bacon age 
estimations for all suitable North American pollen records from Neotoma (as of January 2018). In this dataset, 
we used advanced age-depth models with consistent priors while considering the full breadth of conditions for 
core deposition, and we provided appropriate uncertainty estimations for the sample ages. With the publication 
of this dataset, any researcher interested in using this pollen dataset will have access to accurate, consistent age 
estimations, allowing them to directly compare records across North America. We anticipate that this dataset will 
be used extensively by the ecological community to address critical questions about habitat change throughout 
the Pleistocene, Holocene, and into the present.

Methods
Data source.  Pollen records.  We used the neotoma package26 for R27 to query the Neotoma database for 
records that met the selection criteria. We got sedimente cores containing 23,187 pollen samples from 531 sites 
throughout North America (172.25°W to 48.25°W, 10.25°N to 79.75°N) (Fig. 1). The Neotoma database contains 
over 32,000 datasets from more than 16,000 globally distributed sites, including fossil pollen, vertebrates, diatoms, 
plant macrofossils, and other types of data from terrestrial paleoecological and paleoenvironmental studies16. 
Pollen data compiled by the Neotoma database is the most complete dataset available for North America.

We used three criteria to select pollen-containing sediment cores that could produce accurate Bacon models: 
(1) At least three age controls (including radiocarbon dates and other age controls from the most recent age esti-
mation in Neotoma) are present in the core; (2) The maximum interval between two adjacent age controls is less 
than 3000 years; and (3) There are at least four pollen samples in the record, as it is unusual to analyze cores with 
few pollen samples in vegetation history analyses (Fig. 2). We occasionally included a subset of long cores that met 
these criteria but excluded the subdivisions with age intervals exceeding 3,000 years.

Age controls.  We used established age controls in Neotoma, including but not limited to radiocarbon dates, 
U-Pb dates, biostratigraphic events, and the age control at the top layer of the sediment cores if it exists. There are 
more than one chronology in some sediment cores in Neotoma. These new chronologies have previously been 

Fig. 1  Map of included pollen-containing sediment cores from North America.
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added to the database using more advanced age-depth models, such as the Bacon age model in this work. New 
chronologies have also been added using updated age controls. For example, Blois et al.11 added biostratigraphic 
events as age controls to pollen-containing sediment cores in eastern North America. For the sediment cores that 
have more than one set of age controls, we used the set that was uploaded to Neotoma most recently.

Age-depth model.  There are four common Bayesian age-depth model frameworks: BChron20, Bpeat28, 
OxCal14, and Bacon13. Of these four, BChron and OxCal are not informed by prior information about sedi-
ment accumulation rates, which can lead to models that rely too heavily on chronological controls that may 
themselves be problematic as a result of secondary processes within the sedimentary basin13. OxCal is also par-
ticularly suited to chronologies from vertebrate sites that have time-averaged assemblages of taxa rather than 
regularly-accumulating lake sediment cores. Bpeat assumes a linear accumulation rate within deposits, which 
is unlikely within natural environments29,30. Bacon uses prior information about regional accumulation rates 
with estimates of the rate of change of accumulation rates to estimate an accumulation rate at each sample depth 
using a gamma autoregressive process13. Studies13,18 have demonstrated that Bacon produces the age estimations 
with the most appropriate uncertainty estimation. We used the rbacon package31 in R and bulk-baconizing 

Fig. 2  Experiment design. We collected pollen records from Neotoma, built Bacon under different prior 
parameter values, and selected best estimated age to get the final Bacon age. Rectangular boxes indicate data, 
and rounded rectangular boxes indicate process. Green boxes indicate data and process in the Neotoma 
database, and blue boxes indicate data and process in the Bacon age-depth model. Radiocarbon dates are 
calibrated using IntCal1338.
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repository32 – a set of codes to implement Bacon code for building age-depth models for many cores simultane-
ously – to estimate ages for each pollen record33.

Bacon uses a gamma autoregressive semiparametric model to simulate sediment deposition processes within 
subsections of the core13. For a given section of the core, Bacon estimates a rate of deposition based on the posi-
tion of chronological controls within the core, and the rate of deposition of adjacent sections. Users can define 
prior estimates for accumulation rates, the memory parameter, and can additionally add “breakpoints”, or hiatuses 
where they believe that these accumulation and memory parameters might have different priors. Age estimates 
are then generated from the cumulative sum of the deposition rates, as a function of section thickness (which can 
also be set). Bacon has two advantages over classical models: it does not over-inflate estimated age uncertainties18 
and it identifies and avoids outlier radiocarbon dates by relying on accumulation rates13.

Bacon has been used in 1054 published works according to Google Scholar citations (Fig. 3), getting much 
more usage than Bpeat and BChron. OxCal is more cited, in part because of a longer history within the discipline, 
but also because the software is also used to calibrate individual radiocarbon dates, whether or not they are then 
used in chronology construction. Clam is more cited before 2016, but is less cited in the recent two years. Despite 
the Bacon’s more complicated implementation, it is nonetheless continuing to increase in usage because of its 
advantages of higher precision age estimation throughout the core and because training has been widely available.

Identifying prior parameter values.  Bacon requires the researcher to identify and assess prior information, 
including mean sedimentation rate and section thickness. These priors can be estimated regionally29 or can vary 
regionally or locally based on prior knowledge. However, Bacon can be highly sensitive to selection18 of pri-
ors, so a clear framework for the selection of priors should be established. The Bacon model divides a core into 
equal-length sections. Section length is set by the user, although Bacon may suggest a default section thickness. 
For each iteration of the model and for each section, an accumulation rate is sampled randomly from a Gamma 
distribution. The sampled accumulation rate is based on the prior defined for the model run and adjusted using 
the accumulation rate estimated from the section below. This strategy effectively accounts for autocorrelation 
of accumulation rates within a core. Accumulation rate sampling minimizes the uncertainty of the fit through 
the chronological controls. The sampling from the Gamma distribution at a single sample provides a posterior 
estimate of accumulation for the individual section (as opposed to the prior defined by the user). Using Markov 
Chain Monte Carlo (MCMC) sampling, the accumulation rate for each section of the core is then estimated once 
per iteration, across some large number of iterations, resulting in a posterior distribution of accumulation rates 
for each section. Sample ages can then be estimated by combining the accumulation rates (cm/yr) with the section 
thicknesses (cm), providing a distribution of ages at any depth within the core.

We ran Bacon for each core using the bulk-baconizing repository32, using 16 combinations of prior param-
eters: four mean accumulation rates and four section thicknesses (Fig. 2). Goring et al.29 identified likely prior 
accumulation rates for Holocene sediment cores in the northeastern United States. According to their work, accu-
mulation rates rarely exceed 50 yr/cm and are rarely lower than 5 yr/cm. The median accumulation rate is 10 yr/
cm and the mean rate is 20 yr/cm. We proposed four mean accumulation rates in our work based on the Goring 
et al.29 paper: 5 yr/cm, 10 yr/cm, 20 yr/cm, and 50 yr/cm. When Bacon approximates the deposition process, sed-
imentation rate varies smoothly within the core using the gamma model. We also used four values as potential 
section thickness: 5 cm, 10 cm, 15 cm, and 20 cm. Section thicknesses smaller than 5 cm result in so many core 
sections that computational processing becomes unwieldy; section thicknesses larger than 20 cm prevent the 
model from smoothing sufficiently.

We also set a hiatus in the cores from the Northeast and upper Midwest when European settlement was indi-
cated in the age controls, because accumulation rate increased significantly after European settlement34,35. This 
pattern of increasing accumulation rates is apparent in many cores across eastern North America and may be due 
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Fig. 3  Change in the number of papers using different age-depth models over the last 10 years. The cited works 
for Bpeat28, Bchron20, OxCal14, clam12, and Bacon13.
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to a number of factors, including increasing erosion, but is also due to sediment compaction and de-watering 
with depth and basin dynamics36. Dawson et al.35 listed 185 cores including a hiatus of European settlement from 
Neotoma. These cores that had identified settlement horizons that were assigned a hiatus (of length 10 yr, the min-
imum hiatus length in Bacon). This allowed us to apply a different accumulation rate prior to and after European 
settlement in the Northeast and upper Midwest.

Selecting the best prior parameter values and estimated ages.  We established a set of rules by which we could con-
sistently select the best priors and age estimation results for all analyzed pollen records (Fig. 2). Once Bacon has 
been run, each pollen sample possesses an estimated age along with an uncertainty estimation. These estimated 
ages were only calculated for subdivisions of the cores that contained sufficient age controls. We compared the 
results of the 16 models and excluded any results where interpolated ages were not sequential or extrapolated ages 
were not reasonable, i.e. younger than today (2020 AD, given the uncertainty of estimated ages). We then selected 
the model with the shortest distance between the estimated ages and the age controls. As the method we used here 
is a dot-to-dot fit and flawed, we also visually checked the 16 age-depth models for each sediment core to confirm 
that our selection is the best. All the age estimations that we produced list the prior mean accumulation rate and 
section thickness used in Bacon33.

Data Records
All new age reconstructions have been uploaded to the relevant pollen core record in the Neotoma database, and 
a full dataset can be downloaded from figshare33. See Online-only Table 1 for a list of all data.

Technical Validation
Comparing Bayesian age estimations with previous age estimation in Neotoma.  Neotoma 
provides an extensive amount of data, including high-quality and low-quality age estimations. Some age-depth 
models only used simplistic interpolations between dates. Some age estimations are radiocarbon dates without 
calibration. Many age estimations are simply calibrated using a look-up table in Neotoma without using a proper 
calibration curve. Most age-depth models did not give uncertainty estimations. For the 554 sediment cores in 
this work, 202 sediment cores do not have properly-calibrated ages, 162 sediment cores only have estimated ages 
from a simplistic interpolation between chronological controls, and 275 sediment cores do not have uncertainty 
estimations for sample ages. 240 out of 554 sediment cores in this work have properly-calibrated ages from age-
depth models with sample age uncertainty estimation.

We plotted all the available age estimations against the Bayesian age from this work in each pollen record33. For 
314 of the 554 sediment cores, this work is the first to provide a properly-calibrated age estimation with uncer-
tainty using an established age-depth model. For the other 240 sediment cores that already have good age esti-
mations, the dataset in this work provides an additional age estimation with reliable uncertainty using a Bayesian 
age-depth model. Most pollen samples are younger than 10,000 cal BP (Fig. 4c,d). Differences between Bayesian 
ages and previously-estimated ages generally range from 10–100 years (Fig. 4c). Differences between Bayesian 
age uncertainty and previously-estimated age uncertainty generally ranges from 100–1000 years (Fig. 4d). 
The Bayesian ages estimated in this work and previous age estimations increasingly diverge, particularly after 
15,000 cal BP (Fig. 4a,b). Sample ages older than 15,000 cal BP are typically extrapolated by traditional age-depth 
models. The extrapolated age estimations are sensitive to parameter settings in the age-depth model. Moreover, 
this dataset provides a consistent temporal framework for large spatio-temporal analysis covering 554 sediment 
cores across North America, avoiding errors by individual age estimations at each pollen record.

Usage Notes
The estimated ages are expressed as calendar years before present (cal BP), in which ‘present’ is 1950 AD. The 
uncertainty is estimated with 95% confidence, i.e. the min and max values represent 2.5% and 97.5% values in 
quartiles. Depth indicates the position of each pollen sample from the top of the core.

In this work, the Bacon age models do not consider possibilities of a hiatus in the core deposition other 
than the European settlement hiatus. Sudden changes in the deposition environment, such as flooding events or 
human settlement, may result in an abrupt shift in the mean accumulation rate. Accumulation rate is not neces-
sarily correlated before and after a hiatus. Bacon provides methods for estimating ages when there is known hiatus 
in core deposition, but the depth where hiatus occurs and a possible shift in accumulation rate must be decided 
for that core specifically.

This work uses established chronological controls in Neotoma. However, the established chronological con-
trols may be problematic. For example, core top and biostratigraphic events are common chronological controls 
in age-depth models, but some of those chronological controls are recorded in Neotoma without uncertainty 
estimation, which is required by the Bacon age-depth model. We used 2 years as uncertainty if the chronological 
controls from Neotoma do not have uncertainty estimation, but it is a rough estimation and may underestimate 
the uncertainty of sample ages. Another potential source of error is hard water effects in the radiocarbon chron-
ological controls that were dated in early periods. Dissolved carbonate in freshwater can cause a dilution of 14C in 
the freshwater reservoir and result in older-than-real radiocarbon dates. Reservoir corrections have been applied 
to those chronological controls, but not all the corrections are recorded in Neotoma. Age-depth models based 
on those uncorrected radiocarbon dates will produce errors in the age estimation. Future work should look up 
the record and the related publications core by core manually to correct the problematic chronological controls.

We have provided the output of 554 Neotoma pollen-containing sediment cores that meet our criteria for pos-
sessing a subdivision with sufficient age controls for accurate age estimations and reliable uncertainty estimations. 
If the reader wishes to integrate additional pollen-containing sediment cores, new Bacon age estimations can be 
calculated using the same consistent criteria using the scripts provided in association with this work. Estimated 
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ages, together with prior parameters, can be sent to the author of this paper for addition to the dataset download 
and/or an appropriate Neotoma data steward for database upload (https://www.neotomadb.org/contacts/inves-
tigators). The framework and scripts in this work can also be applied to other regions (such as European pollen 
records) and other paleo periods. Readers may need to change the prior values based on the deposition environ-
ment of sediment cores they are interested in.

Code Availability
The script used to compile pollen records, run Bacon, and select the best age estimations for each pollen 
record is available in Github repository https://github.com/yuewangpaleo/BaconAgeNeotoma. The script 
“BaconAgeCode.R” was run using R27. Necessary packages and repository for this code include: bulk-
baconizing32, rbacon31, neotoma26, and Bchron37.
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