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a b s t r a c t

The late Quaternary fossil record provides crucial data that demonstrate how organisms respond to
climate change. These records have been used to great effect, demonstrating that no-analog communities
frequently occur during periods of no-analog climate, and that taxa demonstrate individualistic re-
sponses to change. However, our efforts to reconstruct biotic responses to environmental change are
frequently hampered by inconsistent sampling and differential preservation of fossil taxa. We leveraged
occupancy modeling methods and the fossil pollen record across eastern North America to identify
circumstances under which occupancy modeling improves our ability to estimate relative abundance in
four pollen taxa (Cornus, Fagus, Picea, and Pinus) through time (15 kya to present) and to identify lo-
calities where data are unreliable reflections of the local community. We found that integrating observed
pollen abundance and detectability improves model performance. Low genus richness and large basin
area were consistently important determinants of low detection. Our occupancy models were most
informative for taxa with high enough variation in observed pollen abundance for models to be
adequately calibrated. We combined occupancy model estimates of pollen abundance and detectability
with a Getis-Ord statistical approach to identify spatial clusters of high or low detectability, identifying
regions where a taxon’s pollen is more (or less) reliable. This work will advance the integration of
ecological and paleontological sciences by allowing us to better identify whether a pollen taxon is truly
absent from a fossil site or if it has simply gone undetected, allowing us to produce more robust
paleoecological models. This approach will bolster our ability to identify the responses of plant com-
munities to past climatic and anthropogenic change so that we can improve our predictions of future
responses.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing concerns about the future of species under anthro-
pogenic climate change is driving ecologists to look to the past for
evidence of how species dealt with previous shifts in climate (Willis
ences and Earth and Atmo-
nta, GA, USA.
g), jmcguire@biology.gatech.
et al., 2010; McGuire and Davis, 2014; Dietl et al., 2015; Barnosky
et al., 2017). By tracing species and community dynamics through
time, we can identify how ecosystems change in response to
environmental changes and highlight potential drivers of those
changes (Hadly Barnosky, 1994; Williams and Jackson 2007; Terry
2009; Blois et al., 2010). We use this understanding to improve
ecological models and predictions of ecosystem responses to
environmental change (Williams et al., 2007; Nogu�es-Bravo, 2009;
Varela et al., 2011; Blois et al., 2013; McGuire and Davis, 2013;
Maguire et al., 2015).

The palynological (fossil pollen) record is a particularly
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promising system to reveal insights for translating past biological
dynamics into future predictions and has been used to reconstruct
plant responses to past climate change (Williams et al., 2004; Blois
et al., 2013; Dawson et al., 2016; Maguire et al., 2016; Wang et al.,
2020). The record is composed of high-resolution sediment cores
that document changes in pollen composition over hundreds to
thousands of years (Fig. 1a). Palynological records show that no-
analog plant communities, composed of taxa that are not typi-
cally associated today, were common during past periods of no-
analog climate (Williams and Jackson, 2007). This leads us to
anticipate dynamic, individualistic responses to modern climate
change. As glaciers retreated following the latest glaciation, the
pollen record indicates that plant taxa filled in the newly exposed
landscape at unexpectedly rapid rates, emphasizing the importance
of micro-refugia for survival (Gavin et al., 2014). Paleoecologists use
pollen-vegetation models to translate pollen relative abundances,
counted from sediment cores, into plant community compositions,
providing metrics that demonstrate changes in plant identities,
affiliations, and diversity through time (Dawson et al., 2016). In this
paper, we propose an approach that will estimate relative pollen
abundance while accounting for imperfect detection. The results of
our modeling approach can be used to estimate vegetation
composition more accurately by reducing errors in the detection of
pollen due to the processes of pollen transport and sediment
deposition.
Fig. 1. Occupancy modeling framework for fossil pollen. (a) Sediment cores from eastern No
vertical profile and stratigraphic context for pollen sampling (red lines in core). Time is r
expanded to show a scanning electron microscopy photo of a theoretical pollen sample. Poll
relative abundances of pollen taxa. (b) Observed relative abundances change through time
simultaneously estimate abundance and detectability of taxa using a statistical, maximum
estimate of pollen relative abundance that can be used in a pollen-vegetation model to
framework are replicate samples within designated time bins. (f) Detection estimates are
covariates. Abundance estimation leverages variability in detection and site covariates to refi
estimated in a maximum likelihood framework. (For interpretation of the references to col
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The fossil pollen record is comprised of millions of data records
from fossil localities worldwide (Brewer et al., 2012; Maguire et al.,
2015), but the fossil record suffers from incomplete detection
(Weng et al., 2006; Liow, 2013), which prevents us from confidently
using this remarkable resource to its maximum potential. The field
of taphonomy documents and develops methods to account for
many aspects of incomplete detection in the fossil pollen record,
pinpointing processes that contribute to preservation bias. Kujawa
et al. (2016) demonstrated that the accuracy of pollen-vegetation
reconstruction declines over time, likely because taphonomic
processes differentially degrade pollen granules of certain taxa the
longer those processes act. In addition to taphonomic bias, detec-
tion ability incorporates collection and identification biases and
other biases resulting from the nuances associatedwith a particular
site or study. Although many paleontologists consider taphonomy
and study bias when performing individual site reconstructions
(Behrensmeyer et al., 2000; Jackson, 2012; Kidwell, 2013), associ-
ated metadata are often lost in the amalgamation of data reported
from primary literature when it is translated into records within
large databases (Markwick and Lupia, 2002). Thus, it would be
useful to apply an occupancy modeling approach, a method well-
developed in the ecological literature to account for imperfect
detection, to paleoecological data (Liow 2013). Although many
ecological fields recognize the need for assessing detection
(Borchers et al., 2002; Royle et al., 2013), it is still not consistently
rth America (red points) used in this study. One sediment core is expanded to show its
epresented vertically, so older samples are deeper in the core. One pollen sample is
en samples are taken throughout a sediment core and each sample is counted to obtain
and are observed measures that do not account for taphonomy. (c) Occupancy models
likelihood estimation. (d) One output of a occupancy model is a taphonomy-corrected
reconstruct past vegetation communities. (e) Data used in our occupancy modeling
calculated using consistency of observations in repeated samples and variability in

ne measures of pollen relative abundance. Detection and abundance are simultaneously
or in this figure legend, the reader is referred to the Web version of this article.)
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incorporated even in contemporary ecological studies. A literature
review of ecological articles found that only 23% account for
imperfect detection (Kellner and Swihart, 2014).

Occupancy modeling is a method to statistically account for the
issue of imperfect detectionwhile simultaneously estimating either
occupancy probability or abundance (MacKenzie et al., 2004). Oc-
cupancy models account for sampling effort and environmental
covariates that determine the detectability of a species (MacKenzie
et al., 2004; MacKenzie, 2006). Failure to consider imperfect
detection can lead to strikingly different conclusions (Williams
et al., 2002). In the occupancy modeling framework, occupancy is
defined as the probability of a taxon’s presence in a defined region,
whether or not it was actually observed in that region (MacKenzie,
2006). Here, we use pcount as a strategy for refining fossil pollen
relative abundance estimates. The pcount model estimates popu-
lation sizes by examining replicated counts of abundance obser-
vations (Fig. 1; Royle 2004). The model simultaneously estimates
the detectability and abundance of a pollen taxon at a site (Fig. 1c).
Detectability is estimated by examining the consistency of obser-
vations for repeated samples, along with covariates that are rele-
vant to those samples/observations (Fig. 1 c & f). We adapt a
strategy developed by Liow (2013) that takes advantage of time-
averaging and age uncertainties to use repeated samples from
within a single time horizon as replicates for the purpose of esti-
mating the detectability of a pollen taxon (Fig. 1e). Abundance es-
timations leverage the detectability estimate along with site-level
covariates to refine estimations of pollen relative abundance
(Fig. 1f). Detectability and abundance estimations are simulta-
neously calculated in a maximum likelihood framework (Fig. 1f).

Using this occupancy modeling framework for fossil pollen, we
address three sets of questions. 1) We ask whether adding a
detection component to a model of observed pollen abundance
improves estimates of the relative abundance of pollen taxa
through time and which covariates best explain variation in
detectability of pollen taxa across a landscape. Because of study bias
and biased preservation in the fossil record, we hypothesize that
adding a detection component will significantly improve model
estimates of relative abundance. 2) We ask whether the spatio-
temporal variation in estimated relative abundance and detection
probabilities vary within and across taxa. We expect detection
probabilities to vary across taxa, because some taxa are high pollen
producers, while other taxa have limited pollen productivity, and
detection probability is positively related to the frequency of
occurrence of pollen in a sediment core (Weng et al., 2006). We also
hypothesize that detectability will be lower for older pollen sam-
ples (Kujawa et al., 2016). 3) We ask how reliable different
geographic regions are for interpreting relative abundances from
the fossil pollen record. To do so, we identify the spatial structure of
detectability and estimated pollen abundance in eastern North
America. This strategy allows us to identify instances where low
detectability and low estimated abundances converge to create
conditions where taxon occupancy is too uncertain to be reliable.
2. Methods

We used occupancy modeling to simultaneously estimate
abundance and detection in fossil pollen taxa across eastern North
America. Below, we discuss the fossil pollen data, the covariates we
use to calibrate abundance and detection, and our approach to
occupancy modeling. All modeling was executed in the R Statistical
Programing environment (R Core Development Team, 2018) and
relies on the package unmarked (Fiske and Chandler, 2011).
3

2.1. Pollen data

We used a dataset of 531 eastern North American sites from
Maguire et al. (2016), based on sites originally examined by Blois
et al. (2013). These data are archived in the Neotoma Paleo-
ecology Database (Williams et al., 2018). Each site in this dataset
represents one sediment core and each sediment core has sediment
sampled at multiple depths (Fig. 1a). Pollen was counted from each
sample until a standard limit was reached (typically, 300 or 500
pollen grains), thus pollen counts are relative abundances (Fig. 1b)
(Gavin et al., 2003; Whitmore et al., 2005; Williams and Shuman,
2008). Taxonomic resolution of original pollen identifications var-
ied, so only pollen taxa identified to the genus level were retained
and pollen taxa identified to the species level were aggregated to
the related genus level. Please see Maguire et al. (2016), Blois et al.
(2013), andWilliams et al. (2018) for further details on the nature of
these pollen data.

We relied on the chronology inferred by Blois et al. (2013) and
Blois et al. (2011) for samples within sites, which relate sediment
age to depth using chronological controls such as radiocarbon
dates, tephra layers, or biostratigraphic markers (e.g., Ambrosia rise
associated with Euro-American Settlement). Pollen sample age
accuracy based on cross-validation using this method is roughly
500 years (Blois et al., 2011), which led to our selection of 500-year
time bins for occupancy analyses (Fig. 1e). We aggregate samples
within 500-year time bins centered at six time periods in the past
(0, 3, 6, 9, 12, and 15 calibrated kya).

We selected four pollen taxa from the dataset that represent
different levels of pollen productivity, from low to high (Fig. 2):
Cornus (dogwood), Fagus (beech), Picea (spruce), and Pinus (pine).
All four of these pollen taxa are present in at least 10 sites in each of
the six time periods considered, and all are important components
of North American vegetation assemblages throughout the
Holocene.

The occupancymodel used herein is unable to handle extremely
sparse matrices, i.e. matrices that contain many NA values. How-
ever, the models are more robust when there are more replicate
samples. In the context of a sediment core, each replicate sample
represents a sediment sample from a particular depth from which
pollen was counted (Fig. 1e), and the number of replicate samples
within any particular 500-year time window varies among cores
depending on how densely the original researchers sampled the
sediment core for pollen (number of red lines within blue bins,
Fig. 1e). We attempted to find a balance between maximizing the
number of replicate samples from each site to include in the
analysis while minimizing NAs, so we limited the number of
replicate samples and sites in a dataset for a particular time period.
Sites with fewer than the number of replicates listed in Table 1 were
coded as having missing data and replicates were truncated from
sites with more than the established number of replicates. There
are only a few sites that have a very large number of replicates, so
this choice to avoid sparse matrices should not result in major
differences in our interpretations.

2.2. Covariates of abundance and detectability

We relied on a contemporary understanding of pollen deposi-
tion (Appendix S1) to assign covariates for abundance and detect-
ability. We assessed the strength of an effect of each covariate on 1)
whether a plant taxon could successfully live in a region (abun-
dance/site covariate) or 2) whether the pollen from that taxon
would make it into the fossil record and be sampled and identified
by a collector (detectability/observation covariate). The abundance/
site covariates typically vary at the site level and represent the
ecological niche of the plant taxa in determining their ability to



Fig. 2. Probability of detection at the most recent time period. Histograms are orga-
nized by pollen productivity. The boxplots show the median, quartiles, and outliers of
detection for each taxon. Scanning electron microscope images of pollen grains are
modified from Halbritter and Hesse (2004) for (a) Cornus, Bouchal et al. (2018) for (b)
Fagus, Runions et al. (1999) for (c) Picea, and Schwendemann et al. (2007) for (d) Pinus.
Bars representing 10 mm are under each pollen grain.

Table 1
Number of sites and replicate samples for four taxa at six time periods.

Cornus Fagus Picea Pinus

kya Sites Replicates Sites Replicates Sites Replicates Sites Replicates

0 122 3 233 6 269 7 297 8
3 63 2 146 3 179 3 189 3
6 67 2 116 3 147 3 151 3
9 50 2 78 3 96 4 99 4
12 43 4 65 5 73 5 74 5
15 11 2 16 2 20 2 20 2
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persist at varying relative abundances. The detectability/observa-
tion covariates typically vary at the pollen sample level and
represent the taphonomic considerations in the inclusion of that
4

pollen type within the sample. Although we initially ran a subset of
occupancy models systematically sampling all combinations of
variables across both abundance and detection components for
each time bin and for each taxon, running the full set of combina-
tions was too computationally intensive. In the end, covariates
were selected based on consideration of the process of pollen
deposition, as summarized from the literature (Fig.1f and discussed
below). We expect to find, as many past studies have shown, that
climate strongly influences the estimates of relative pollen abun-
dance (Jackson, 1990), but that soil characteristics will also exhibit
some influence (Davidson et al., 1999). We hypothesize that phys-
iography (e.g., elevation, slope, basin size) will have a moderate
influence on detection (Prentice, 1985; Sugita, 1993) and some as-
pects of soil and climate will have a small, but detectable influence
on detection. Physiographic variables were included as detection
covariates rather than abundance covariates because they have
been strongly demonstrated to affect pollen taphonomy (Prentice,
1985; Sugita, 1993) and covary strongly with many of the climate
covariates included as abundance covariates (Maguire et al., 2016).

Climate is a major component of the environmental niche of a
species and thus determines where on the landscape a species may
occur. It is a fundamental control on both taxonomic distribution
and abundance, and thus is included as an abundance covariate.We
considered four climate covariates that are minimally correlated
(r < 0.65) at our sites: maximum temperature of the warmest
quarter (�C), precipitation of the wettest quarter (mm), average
yearly water deficit index, and growing degree days (days). We
assume these four climate covariates to be relatively strong drivers
of taxon abundance (Appendix S1). In the context of fossil pollen,
various climate covariates also influence deposition and detect-
ability. In particular, wind speed has been shown to influence
pollen relative abundance (Jackson and Lyford, 1999). Higher pre-
cipitation limits wind dispersal, preserving more local pollen, and
thus affecting local detectability. We used precipitation of the
wettest quarter as a taphonomic covariate related to detectability,
and we expect that it has a significant, but relatively weak, influ-
ence on detectability (Appendix S1). All climate covariates used in
our analysis were described and derived in Maguire et al. (2016).

Soil characteristics influence which plant species are present in
a given geographic region, thus affecting both taxonomic distri-
bution and abundance. We selected six soil covariates that are
minimally correlated (r < 0.65) at our sites as environmental
covariates to estimate relative abundances: maximum soil depth,
subsoil cation exchange capacity, subsoil organic carbon, subsoil
pH, subsoil sand fraction, and subsoil silt fraction (Liu et al., 2014).
While we do consider the difference of soil characteristics among
different cores, we simply assumed that the soil characteristics are
constant through time within a sediment core. Although this
assumption is unrealistic (Willis et al., 1997), we do not have
comprehensive soil maps at the continental scale through the time
periods of interest, thus this is a limitation in this study. We expect
soils to influence abundance, but less so than climate covariates
(Appendix S1).

Some soil characteristics, including the pH and density/porosity
of the sediments, can affect the detectability of taxa. The ideal
environment for pollen preservation is in slightly acidic non-
oxidizing soil. Soils with high pH cannot break down pollen gran-
ules that are stuck together, so those granules are difficult to
identify and the resulting detectability is expected to be low
(Dimbleby, 1957). Chemical oxidation in sandy soils thins the walls
of pollen grains and decreases pollen detectability, as well
(Havinga, 1971). We used subsoil pH and subsoil sand fraction as
taphonomic covariates to calculate detectability, and we expect
them to influence detectability but relatively less so than physio-
graphic covariates (Appendix S1). Although we assumed that the
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soil characteristics do not change through time, we think the in-
fluence of these variables will change throughout our six time
periods because corrosion and grinding of pollen granules should
compound over time. Note that we focus on soil properties because
they may influence pollen preservation during transport to lake
sediments, but all sediment cores were recovered from lakes, bogs,
or marshes (Blois et al., 2013).

Physiographic variables influence the likelihood that pollen will
make its way into a lake and thus be preserved in an appropriate
depositional environment. These variables are slowly changing
through time and influence detection.We used three physiographic
variables measured at 1 km2 (30 arcsecond) resolution as tapho-
nomic covariates to calculate detectability: mean elevation (m) and
mean slope (m) within 10 km of each fossil site, and basin area
(km2) (Danielson and Gesch, 2011). Basin area and slope values are
log transformed. The physiographic variables are not highly
correlated at our sites (in all cases, r < 0.65). We expect these
covariates to be strongly associated with detection (Appendix S1).

Samples with high taxon richness have lower relative abun-
dances on average. Thus, the probability of a given taxon being
detected will be lower at higher richness. Conversely, if more taxa
are present in a sample, it might indicate a depositional setting
with high fidelity to the vegetation on the landscape, which would
be positively associated with detection. We use genus richness as a
taphonomic covariate to calculate detectability (Appendix S1).

2.3. Occupancy modeling

In occupancy modeling, a single site is sampled repeatedly
throughout a season. Each time a site is sampled, a species is
observed at some abundance, which might be zero. Occupancy
modeling takes advantage of these repeated observations to
simultaneously estimate the probability of detection and the
abundance of that species given a history of observations
(MacKenzie et al., 2002). It simultaneously considers covariate in-
formation that influences either abundance or detectability
estimations.

We applied the pcount occupancy model, which fits an N-
mixture model of Royle (2004), to fossil pollen count data across all
sites with repeat samples for each of our time bins (Fig. 1c and f).
Here, a “site” is a series of pollen samples taken from a single
location within a 500-year time bin (Fig. 1a). To estimate abun-
dance, we used repeated samples of observed relative abundances,
often referred to as naive estimates in the occupancy modeling
literature, from within each time bin (Fig. 1b and e). Taxa at the
repeated samples for a given time period represent a single season
in the occupancy modeling literature (and here represents a 500-
year time window). These samples can vary in observed relative
abundance and may be more or less detectable given other taph-
onomic factors (i.e., observation covariates; Fig. 1f). Thus, detect-
ability varies at the observation level, represented here by each
repeated sample.

We constructed four models for each taxon at each time interval
to compare model strengths with and without our two sets of
covariates, the detection covariates and the abundance covariates.
Detection covariates correspond with repeated pollen samples, and
these affect taphonomic processes that may lead to deposition and
degradation of pollen granules. Abundance covariates correspond
with sites, and these consist of environmental information that
would affect a plant’s ability to live in that location (similar to the
covariates used in species distribution models; Fig. 1f). For consis-
tency and comparability, we used the same covariates for all taxa at
all time periods. Constructing these four models allows us to
determine whether or not it is important to account for detection
when modeling the abundance of pollen taxa across a landscape.
5

We used AICc for model comparison and to account for small
sample sizes (Burnham and Anderson, 2002).

Detection probabilities and relative abundance estimations
were calculated for all sites using the best occupancy model for
each taxon-by-time comparison. Occupancy model outputs are
sufficient for interpretation, but in addition, we chose to evaluate
the occupancy model outputs with a Getis-Ord statistical approach
in order to gain an understanding of the spatial patterns associated
with the occupancy results. The Getis-Ord statistical approach, also
called hot-spot analysis, is a spatially explicit approach that relies
on z-scores to calculate a Getis-Ord Gi statistic that identifies
spatial clusters of high or low values. This statistic uses values of
neighboring sites to calculate a local average and compares that to a
global average to estimate whether a deviation is significantly
greater than would be expected by random chance. In our
occupancy-model context, the Getis-Ord Gi statistic indicates
whether, when, and where there are spatial clusters of relatively
high or relatively low detectability and relative abundance esti-
mations (Getis and Ord, 1992; Ord and Getis, 1995). For the Getis-
Ord analyses, we choose a neighborhood size of 60 km, which ap-
plies across all sites. We used this analysis to evaluate the spatial
structure of detection and regional reliability in observed estimates
of relative abundance. We hypothesize that regional deposition
rates will be influenced by regional differences in paleoclimate and
in physiography (e.g., larger basin size will increase the regional
signature, while dampening the local signature of vegetation)
(Prentice, 1985; Sugita, 1994).

Finally, we performed a model validation by projecting models
that were fitted to the 0e500 years ago time bin onto the 3 kya time
bin. This is intended to ensure that the relationship between
covariates and pollen abundance as estimated with our occupancy
models are consistent through time.We compared projected pollen
abundances with observed abundances from the 3 kya time bin
using a log-log linear regression model to calculate the amount of
explained variance in the projected estimates from the observed
abundances. We also compared differences between estimated and
observed pollen abundances within each time bin to infer how
accounting for detectability changes abundance estimations. We
anticipate that by accounting for detection, this approach will help
improve estimates of relative abundance of pollen taxa in the
palynological record.

3. Results

3.1. Does adding a detection component and covariates improve
estimations of abundance?

For all taxa except Cornus, the best model nearly always
accounted for both abundance and detection covariates (16 of 18
model comparisons; Appendix S2). For Cornus, detectability
contributed to the best model in the four most recent time periods,
but abundance only contributed in two models (6 kya and 12 kya).
Cornus had low occupancy across sites, and where found, occurred
in low abundances.

The ability of covariates to account for variation in abundance
and detectability estimates was largely consistent with the process-
based model of pollen deposition (Appendix S1, S2). As predicted,
we found that the climate covariates had relatively higher coeffi-
cient estimates than soil covariates and both sets were generally
informative for abundance estimation (Tables 2 and 3; Appendix
S3). Contrary to the general pattern, Cornus had few influential
covariates, and Fagus at 15 kya as well as Pinus at 0, 3, 6, and 9 kya
had mixed strengths in the influences of climate and soil covariates
on abundance (Table 2).

We predicted that there would be a strong influence on



Table 2
Coefficient estimates for abundance covariates. Double dashes (–) mark estimates not significantly different from zero. Best models are indicated with symbols for 1) no
detection and no abundance covariates (,D), 2) no detection and full abundance covariates (,:), 3) full detection and no abundance covariates (-D), and 4) full detection
and full abundance covariates (-:). Only significant coefficient estimates are reported. Standard errors, z scores, and p-values are available in Appendix S3.

Taxon kya best
model

intercept maximum
soil depth

subsoil cation
exchange

subsoil
organic
carbon

subsoil
pH

subsoil silt
fraction

subsoil sand
fraction

max temp
warmest
quarter

precipitation
wettest quarter

yearly
water
deficit

growing
degree days

Cornus 0 - D – – – – – – – – – – –

3 , D,
- D

7.63 – – – – – – – – – –

6 -: – – – – – 7.16 8.77 9.56 – 3.4 –

9 , D,
- D

– – – – – – – – – – –

12 ,: – – – – – – – 13.42 – – –

15 , D – – – – – – – – – – –

Fagus 0 -: 3.05 – – 0.11 �0.13 0.34 0.41 – �0.46 1.16 1.05
3 -: 3.28 – 0.09 0.24 �0.16 0.23 – �1.24 1.39 1.52
6 -: 2.3 – 0.2 �0.12 0.97 0.4 0.3 1.11 �0.46 2.44 2.12
9 -: 1.33 – �0.27 �0.17 �0.49 1.53 1.72 – �0.86 – 2.44
12 -: �0.66 1.51 �1.97 �1.11 1.3 – �2.67 �3.28 4.27 �1.84 1.46
15 ,: �325.5 100.25 �640 – 510.84 �436 �348 – 46.15 301.05 –

Picea 0 -: 3.38 0.05 0.41 0.15 �0.36 – �0.07 0.17 – 0.2 �1.21
3 -: 3.2 �0.47 0.51 0.15 �0.24 �0.23 �0.1 �0.57 0.52 �0.53 �1.17
6 ,: 3.13 �0.19 0.55 0.2 �0.31 0.21 0.32 �0.61 0.5 �0.36 �1.13
9 -: 3.38 �0.47 �0.27 – �0.37 0.57 0.52 0.18 – �0.44 �1.74
12 -: 5.3 0.11 �0.15 – 0.21 0.33 0.37 �2.02 0.05 �0.33 1.34
15 -: 6.25 �0.1 – 0.08 0.14 �0.21 0.65 �0.65 �0.8 1.52 1.15

Pinus 0 -: 5.26 0.18 0.1 �0.14 �0.45 0.05 0.37 0.13 – �0.09 �0.08
3 -: 5.24 0.13 0.16 �0.13 �0.88 0.25 0.43 0.21 �0.19 �0.25 �0.27
6 -: 5.46 0.15 0.05 �0.04 – 0.09 0.48 0.97 �0.08 0.51 �0.71
9 -: 5.92 �0.09 0.24 – �0.39 0.47 0.7 0.04 0.24 �0.24 �0.22
12 -: 5.04 �0.07 �0.27 �0.1 0.34 �0.06 0.24 1.46 �0.44 0.84 �0.87
15 -: 5.22 0.43 �1.11 �0.08 – �0.75 �1.01 2.7 0.4 0.6 �2.12

Table 3
Coefficient estimates for detection covariates. Double dashes (–) mark estimates not significantly different from zero. Best models are indicated with symbols for 1) no
detection and no abundance covariates (,D), 2) no detection and full abundance covariates (,:), 3) full detection and no abundance covariates (-D), and 4) full detection
and full abundance covariates (-:). Only significant coefficient estimates are reported. Standard errors, z scores, and p-values are available in Appendix S3.

Taxon kya best model intercept genus richness mean elevation basin area (km2) mean slope subsoil pH subsoil sand fraction precipitation of the wettest quarter

Cornus 0 - D �2.57 0.87 1.25 �0.68 – – – –

3 , D, - D �10.96 – – – 1.79 – �1.28 –

6 -: �13.37 3.01 4.77 – �13.63 – – –

9 , D, - D – – – – – – – –

12 ,: – – – – – – – –

15 , D – – – – – – – –

Fagus 0 -: �0.71 0.49 0.4 0.09 – �0.27 – �0.28
3 -: �0.74 1.01 �0.23 �0.38 0.51 0.99 �0.13 0.85
6 -: �1.44 0.54 – �0.57 0.84 �0.28 – �2.35
9 -: �1.23 0.74 �0.63 �1.75 0.71 – – –

12 -: – – 1.24 �4.58 �1.77 3.4 0.46 1.83
15 ,: – – – – – – – –

Picea 0 -: �0.21 – 0.21 0.11 �0.06 0.31 �0.05 0.49
3 -: 0.39 0.11 �0.23 �0.29 0.24 0.84 0.25 –

6 ,: �0.27 – – – – – – –

9 -: �0.9 0.12 0.22 – �1.07 0.4 �0.3
12 -: �0.49 0.04 – 0.56 0.2 �0.54 �0.22 �0.34
15 -: �1.69 – 1.97 �0.85 �2.12 0.58 �0.77 0.38

Pinus 0 -: �0.39 0.39 �0.1 0.13 �0.31 – 0.07 �0.25
3 -: 0.07 0.56 0.13 �0.39 �0.34 0.73 – 0.32
6 -: �0.06 0.38 �0.37 0.27 �0.22 �1.11 �0.24 �1.29
9 -: �0.51 0.28 �0.28 �0.82 �0.06 0.21 – �0.7
12 -: �0.47 0.38 �0.1 �0.56 �0.1 0.16 �0.18 –

15 -: �1.73 – 0.42 �0.69 – – – �1.37
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detectability from physiographic and biological covariates and a
detectable, but not strong, influence from soil and climate cova-
riates. We found that adding climate, soil, physiographic, and bio-
logical covariates improved the fit of the models, but that there was
no real pattern in the strength of covariates influence on detect-
ability (Table 3).
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3.2. How do occupancy models modify estimations and predictions
about relative abundance?

Estimated relative abundance was higher than the observed
relative abundance at nearly all sites for all taxa and time periods
(Fig. 3). Therewas no relationship between estimated and observed
relative abundance in Pinus, except at 15 kya. Regardless of



Fig. 3. Observed and estimated relative abundance for each taxon (column) by time (row) group. The blue points represent high detection probabilities and the yellow points
represent low detection probabilities. Best models depicted are identified with symbols (Table 2). The line of equality is shown in gray. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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observed abundances, in this highly productive, wind-dispersed
taxon, estimated abundance is always relatively high. At 15 kya,
there was a relationship between estimated and observed abun-
dance, and the y intercept was greater than zero, which indicated
that estimated abundances are consistently higher than observed.
Picea demonstrated the strongest relationship between estimated
and observed abundance. In both Picea and Fagus, this relationship
was stronger in recent times and deteriorates back in time. Cornus
had consistently low observed abundances that were frequently
estimated to be higher when covariates were taken into
consideration.

When we test the transference of our models across time, we
identified clear relationships between observed and projected
7

relative abundances in pollen for Fagus (R2 ¼ 0.41; p < 0.001), Picea
(R2 ¼ 0.66; p < 0.001), and Pinus (R2 ¼ 0.16; p < 0.001). This in-
dicates that the models are informative for estimating relative
pollen abundance (Fig. 4). There was no relationship between the
observed and projected relative abundances for Cornus pollen
(p ¼ 0.57), which indicated that the model for this pollen taxon is
uninformative for estimating relative abundances (Fig. 4, Appendix
S4).

3.3. What factors explain detectability of taxa across a landscape?

All detectability covariates were important explanatory vari-
ables for at least half of the taxon-by-time combinations, and in



Fig. 4. Scatterplot of observed relative abundances at 3 kya and predicted relative abundances from a model calibrated at the 0e500 years ago time period and projected onto the
covariates at 3 kya. There is a significant relationship between observed and predicted abundances for Fagus, Picea, and Pinus, but not for Cornus (see Appendix S4).
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fact, many were relevant for most of the model comparisons
(Table 2). The sign (±) of the coefficient estimates for genus richness
and basin area were consistent. The coefficients on genus richness
were always positive, indicating that higher genus richness is
associated with higher detectability. The coefficients for basin area
were mostly negative, indicating that, in general, smaller basin
sizes contribute to higher detectability. Elevation, slope, pH, sand,
and precipitation are also important explanatory factors of
detectability for most taxa and time periods; however, the sign on
the coefficient estimates fluctuate, indicating that the direction of
the relationship depends on the specifics of the taxon-by-time
occurrences (Table 2).
3.4. Do detection probabilities vary between taxa and what is the
spatio-temporal variation in abundance and detection estimates in
each taxon?

The probability of detection ranged between zero and one and
varied within species across sites (Fig. 5). Distributions of detection
probabilities differed. For Fagus, Picea, and Pinus, the detection
probabilities were approximately normally distributed with the
central tendency away from a zero-detection probability. Cornus
detectability was greatest near zero and truncated at zero. Picea had
the highest detection probability, followed by Pinus, Fagus, and
Cornus, respectively. This order suggested that pollen productivity
had a large influence on detectability. In general, detectability
decreased with time, except for in Picea and Pinus at 3 kya, where it
moderately increased (Fig. 5).

Detection probabilities and estimated abundance varied across
8

taxa and through time. Plants with higher pollen productivity, Pinus
and Picea, had higher estimated abundance (Fig. 5). Regions of low
detectability but high abundance estimates are identified within
several maps, notably for Cornus and Fagus, and are increasingly
frequent as sites become older. The high detectability scores for
Picea and Fagus appeared to be the result of some regions of highly
detectable low abundance estimates. However, there were few
regions of low abundance estimated for Pinus, indicating that high
detectability scores for this taxonwere commonly paired with high
abundance estimates.
3.5. How reliable are regions for interpreting abundance?

The analysis of regional reliability of relative abundance and
detectability showed patterns of spatial clustering for both high
and low values of relative abundance and high and low values of
detectability. The Getis-Ord Gi statistic calculated for this analysis
detected significant regional differences in estimates of relative
abundance and detectability across taxa and through time (Fig. 6).
Although we combine the results from these two analyses within
Fig. 6 to demonstrate the relationship between abundance and
detectability, the Getis-Ord Gi statistics were calculated separately
for relative abundance and detectability estimates. The important
aspect here was detectability, because without a reasonable
amount of detectability, abundance measures will be low. Regions
of high relative abundance or high detectability values that are
significantly greater than expected based on the global distribution
are equivalent to hot spots. Regions of low relative abundance or
low detectability values that are significantly less than the expected



Fig. 5. Relative abundance and detection probabilities within each taxon (columns) by time (rows) group for the best model. Best models depicted are identified with symbols
(Tables 2 and 3). Probabilities of abundance and detection are represented by a two-dimensional color gradient. End members of the color gradient are light blue for low relative
abundance and low detectability, yellow for high relative abundance and low detectability, purple for low relative abundance and high detectability, and teal for high relative
abundance and high detectability. Color categories were grouped by splitting each axis of probabilities into three quantiles. The 2D color legend replaces mapped estimates for
Cornus at 15 kya, because the best model was the null model. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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based on the global distribution are equivalent to cold spots. We
recommend performing any in-depth study on one of these taxa in
regions of high detection confidence. Picea and Pinus had north-
eastern regional clusters of high detectability and low relative
abundance estimates (purple; Fig. 6). Picea at 0 kya and Pinus at
0 and 3 kya had regional clusters in northern Quebec with low
detectability and high relative abundance estimates (yellow; Fig. 6).
There were few distinct regional clusters at 15 kya and generally
low detection.
9

4. Discussion

4.1. Abundance and detection estimation: the occupancy modeling
approach

Imperfect detection of species is a general problem in ecological
studies, but is particularly acute in paleoecology (Weng et al., 2006;
Liow, 2013; Kujawa et al., 2016). Here, we show that occupancy
models can improve interpretation of the fossil pollen record by
integrating estimates of detectability from replicated samples (i.e.
detection probability), in addition to detection and abundance



Fig. 6. Hot spot analysis calculated with Getis-Ord Gi statistic for each taxon (column) by time (row) group. Probabilities of relative abundance and detection from the best models
are compared with other sites nearby to calculate Gi and determine if a region has particularly high or low probabilities. Best models depicted are identified with symbols (Tables 2
and 3). The two dimensional color gradient represents significantly low (low), not significant (�), or significantly high (high) Gi for relative abundance and detection. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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covariates, into relative abundance reconstructions (Tables 2 and 3;
Figs. 2, 3 and 5). A strength of this approach is that detection
probabilities and abundance estimations are decoupled (Fig. 5). As
a result, we integrate these outcomes using the Getis-Ord approach
to identify regions where a given taxon is highly detectable
whether or not it is likely to be abundant. This can demonstrate
geographic regions where we could confidently focus taxon-
specific studies (Fig. 6). A region that has low detection but high
abundance estimates could be interpreted as one where over-
dispersion of a motile pollen is likely to have occurred. Importantly,
we can identify regions likely to have true absences (purple in
Fig. 5) as opposed to low detection (pale blue in Figs. 5 and 6). For
example, using this method we can have confidence that Picea
10
pollen was truly not present in the regions to the east of the Great
Lakes over the last 3000 years, and that the genus likely has a hard-
to-detect distribution in northern Quebec (yellow in Fig. 5).

Both the abundance and detection covariates that we identified
as likely relating to the relative abundances of pollen granules
significantly improve most models (Tables 2 and 3). Importantly,
we find that detectability covariates are important explanatory
variables for at least half of the models, although relationships vary
across taxa and through time (Table 2). However, the strength of
the relationships of abundance covariates from the process-based
model do generally hold. For example, the climate covariates
more strongly influence abundance estimates than soil covariates,
but both are important more often than not.
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Plant productivity and dispersal affect both detectability and
relative abundance estimations. Cornus, which has very low pollen
productivity and biologically-facilitated dispersal, has the lowest
observed relative abundances and the most extreme increases in
estimated relative abundances (Fig. 3). However, due to the nature
of these data (i.e., extremely low sample sizes), there is little power
to estimate detectability. Thus, occupancymodeling is not expected
to improve estimates of relative abundance for this group. Occu-
pancy modeling is probably most informative for taxa with similar
characteristics to Fagus, a taxon with a combination of relatively
low pollen productivity and high dispersal ability via wind (Fig. 3).
Likewise, Picea, which has high pollen productivity and is also
anemophilous, has abundance estimates that seem to be improved
by occupancy modeling. Pinus, however, is estimated to be highly
abundant everywhere when occupancy models are applied, likely
due to its incredibly high pollen motility and omnipresence in the
observed pollen record.

Occupancy models are informative to estimate pollen relative
abundance for taxa with moderate to high variation in relative
abundance across a landscape (e.g., probably not taxa like Cornus or
Pinus). These models produce updated relative abundance esti-
mations for pollen taxa that differ from observed pollen relative
abundances (Fig. 3). However, there is negligible explained variance
in the log-log linear regression model for testing the association
between estimated and observed relative abundance of Cornus at 3
kya (Fig. 4). Although the predicted-observed association of Pinus at
3 kya shows a regression slope significantly different from zero, the
amount of explained variation is still low at 16%, so it is unclear
whether it is justifiable to apply a complicated modeling approach
to adjust Pinus relative abundances prior to use in downstream
modeling efforts. Fagus and Picea have the highest explained vari-
ance in the predicted-observed relationship (41% and 66%,
respectively), and we recommend applying this occupancy
modeling framework to adjust those relative abundance estimates
prior to use in downstream modeling efforts.

4.2. Assumptions and considerations

Our approach assumes processes influencing deposition, pres-
ervation, and vegetation on the landscape, reflected in abundance
and detection covariates, are relatively stable within the 500-year
time bins. Support for this assumption differs depending on the
underlying ecological dynamics within a time period. Additionally,
these 500-year time bins reflect the confidence interval of the age
estimates of the sediment cores (Blois et al., 2011). Overall,
grouping samples across periods of large environmental change
runs the risk of classifying absences as false absences instead of true
absences. In our study, we examine six time intervals (0, 3, 6, 9, 12,
and 15 kya). At least two of these intervals correspond to times of
rapid change (12 kya is during the Younger Dryas period and 15 kya
encompasses the start of the Bolling-Allerod period). Our choice of
500 years is largely pragmatic, striving for a narrow enough time
window to satisfy the assumptions but also capture multiple
samples of a taxon. Thus, the decrease in detection probabilities at
older time periods (Figs. 5 and 6) may be due not just to sample age
but to the rapidity of climate change during the 12 and 15 kya time
periods, which resulted in real differences in fossil pollen abun-
dance estimates across samples.

In a traditional occupancy-modeling framework, repeat visits to
a site result in multiple observations of abundance in a relatively
short window of time. More visits to a site increase sample sizes to
estimate abundance and detectability, thus increasing the power of
statistical analysis. However, because of the inability of occupancy
models to handle sparse matrices, we truncated our replicate
samples to even out the number of samples per site (see Methods).
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Thus, because of uneven temporal sampling across sites, we sacri-
ficed the power that comes from having an increased number of
replicates in favor of having more sites. Despite this sacrifice,
including detection covariates in our modeling framework gener-
ally improved model estimations of relative abundance.

4.3. Relationship between fossil pollen and vegetation

Occupancy models improve most estimations of relative abun-
dances of fossil pollen. However, fossil pollen does not directly
indicate the relative abundances of plants on the landscape. To
estimate plant assemblage composition, many factors must be
considered, including plant pollen productivity and pollen
dispersal distances, none of which are included in our models.
Models have been developed to convert pollen abundances to
landscape vegetation (called PVMs or pollen-vegetation models),
including STEPPS (Dawson et al., 2016) and LOVE or REVEALS
(Sugita, 2007a, b). We suggest that the outputs of occupancy
models can serve as inputs for these conversion models, which
should reduce uncertainty and improve estimations of plant com-
munities and their evolution over time.

In addition, many studies also directly use pollen abundance
estimates to examine changes in plant taxon relative abundances in
response to specific drivers (Blois et al., 2013; Maguire et al., 2016).
The next step for implementing an occupancy-modeling approach
tomodel vegetation changes on a landscape through timewould be
to determine if using corrected relative abundances improves
model fit within PVMs or distribution models relative to the orig-
inal abundances. Caution should be taken when replacing esti-
mated relative abundance for observed relative abundance by
examining the fit of the model to other proxies such as plant
macrofossils, which may more accurately indicate local presence.

5. Conclusions

Here, we are able to demonstrate that occupancy models are
useful for correcting relative pollen abundance estimates in a way
that accounts for taphonomic covariates (Fig. 3). Accurate relative
abundance estimates for fossil pollen are important because they
are used in subsequent models estimating vegetation (Williams
and Shuman, 2008; Dawson et al., 2016), reconstructing paleo-
climate (Bartlein et al., 2011; Marsicek et al., 2018), or estimating
past distributions (Williams et al., 2004). Yet, fossil pollen abun-
dance estimates are subject to a variety of potential biases, many of
them related to our ability to accurately detect fossil pollen. Further,
the increasing use of databases has the potential to amplify existing
bias across many datasets (e.g. Inman et al. (2018)). There are many
approaches aimed at quantifying and correcting for these biases
(reviewed recently by Dawson et al. (2016)), with different data
requirements and complexity. We suggest the Getis-Ord approach
to further assess the relative confidence that we have in the
detectability of pollen taxa for the appropriate selection of regional
analyses.

We are borrowing information through time in the form of
repeated samples, and explicitly accounting for the potential in-
fluence of physiographic and edaphic factors in our models of
relative abundance. In doing so, occupancy modeling may be able
to account for some of the taphonomic biases present in fossil
pollen data and maximize the potential of large datasets to address
ecological questions. Further, occupancy modeling provides a
flexible framework that applies across scales. For example, we have
applied this approach to estimate abundance and detection prob-
abilities across many sites, but it can also be applied at a local scale
to one or a few sites, where more detailed knowledge of the local
physical context may alter the choice of abundance and detection
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covariates to include in the process model. The next step is to add
adjusted relative abundances into vegetation reconstruction
models to capture a more realistic picture of the vegetation land-
scape through time.
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